Si usted es una persona con dificultades visuales, navegue el sitio desde aquí

Stanislas Dehaene: "Cuanto antes desarrollemos la intuición matemática, mejor"

En un nuevo libro, el brillante neurocientífico francés presenta todo lo que se sabe sobre cómo la mente crea y adquiere conceptos matemáticos

SEGUIR
LA NACION
Domingo 10 de abril de 2016 • 22:38
Stanislas Dehaene, en Buenos Aires
Stanislas Dehaene, en Buenos Aires. Foto: Patricio Pidal / AFV
0

¿Qué es un número, que el hombre puede conocerlo, y qué es un hombre, que puede conocer un número?

Esta pregunta, que inspiró y atormentó a Warren Mc Culloch, genio inclasificable, también guía a Stanislas Dehaene en la apasionante travesía que propone en su nuevo libro, El cerebro matemático (Siglo XXI, 2016), donde reúne todo lo que se sabe acerca de cómo el cerebro desarrolla una de las más cardinales competencias humanas.

En un texto atrapante, tal como El cerebro lector y La conciencia y el cerebro (ambos de Siglo XXI), el profesor del Collège de France, director de la unidad de neuroimágenes cognitivas del Instituto Nacional de Investigación Médica y de la Salud de Francia (Inserm) y ganador (junto con Giacomo Rizzolatti y Trevor Robbins) del Nobel de las neurociencias, el Brain Prize, analiza las competencias matemáticas de los animales y de los bebés humanos, las bases biológicas del talento matemático, los vínculos entre la palabra y el número, y los aportes de las neurociencias a la educación matemática. Una lectura indispensable.

-Doctor Dehaene, escribió este libro antes de cumplir 30 años. ¿Hubo avances importantes en lo que se sabe sobre cerebro y matemática desde entonces?

-El libro fue revisado extensamente desde su primera publicación. Aprendimos mucho acerca de qué circuitos del cerebro se activan con las operaciones matemáticas; es un campo en constante crecimiento. Para mí, uno de los descubrimientos más provocativos tiene que ver con el rol de neuronas específicas que codifican para la matemática. Nosotros habíamos empezado a tomar imágenes cerebrales de personas haciendo cálculos. Luego, nuestros colegas descubrieron que los animales pueden hacer matemática elemental; por ejemplo, ver un conjunto de puntos y saber cuántos objetos hay aproximadamente, e incluso combinar dos conjuntos y decidir cuál es el número total. De modo que pensamos: "Tal vez estén usando los mismos lugares del cerebro que nosotros". Les sugerimos a colegas que estudian monos que busquen en esos lugares y encontraron neuronas que responden a números específicos. Neuronas que se activan con el tres, otras que se activan con el cinco, poblaciones de neuronas que se ocupan de números. Ha sido una exploración intelectual extraordinaria.

-El investigador argentino Rodrigo Quian Quiroga mostró que si les mostraba a sujetos de investigación la imagen, el sonido o el nombre escrito de ciertas celebridades, como Jennifer Aniston o Maradona, se activaban siempre las mismas neuronas. ¿Ocurre algo similar para los números?

-Exactamente. Bueno, esto fue observado en animales; hay pocas observaciones en humanos, porque en esta área no podemos llegar con electrodos. Pero en animales es lo que encontramos: si ponemos un electrodo en el área parietal, vemos que cierto conjunto de neuronas reaccionan si ven un solo objeto, hay otro conjunto que reacciona si ven dos objetos, otro, si hay tres. Si sigue con cuatro o cinco objetos, ocurre lo mismo, pero los conjuntos se hacen menos precisos; es decir que hay algunas neuronas que reaccionan al cuatro y al cinco. Eso explica porqué nuestro sentido del número es sólo aproximado. Creemos que hay un código similar en el cerebro humano. Tenemos observaciones indirectas.

-¿Estos y otros hallazgos confirman que el sentido del número no es una capacidad exclusivamente humana?

-Así es. En distintos experimentos, se les enseñó a los monos a usar cospeles como una suerte de dinero que pueden usar para cambiar por víveres y entienden las cantidades. Pero incluso en un ambiente completamente natural, hay ahora observaciones en todo tipo de especies, ratas, palomas, peces, incluso en salamandras sin ningún entrenamiento, que muestran que saben cuántos congéneres tienen (¿cuántos están en mi grupo y cuántos están en otros grupos?) y también pueden estimar cantidades de comida disponible. Hay animales que esconden semillas para tener granos durante el invierno, saben cuántos granos tienen ocultos en un determinado lugar.

-¿Es decir, que la habilidad matemática fue preservada por la evolución?

-El título de mi libro en inglés es The number sense (El sentido del número). Creo que se trata exactamente de eso, un sentido, comparable con el sentido del color que también es una computación del cerebro. El color no está en el mundo externo, está en el cerebro del observador. En este caso es el sentido del número lo que nos permite mirar un conjunto de elementos y decidir que allí hay una cantidad que podemos evaluar aproximadamente. Ésta es una de las bases de la matemática. Pero también hay un sentido del espacio, otro del tiempo... Y lo interesante es que están todos en el mismo lugar del cerebro: el lóbulo parietal. Nosotros mostramos que este lóbulo parietal es una de las áreas críticas para la matemática de alto nivel. Esto es muy consistente con la idea de reciclaje neuronal que desarrollé para el dominio de la lectura y aquí se aplica muy bien a la idea de número: desarrollamos la matemática gracias al "reciclaje" de circuitos que tienen una historia evolutiva muy larga y nos permiten evaluar un número aproximado, los transformamos para que nos permitan estimar un número exacto, y usamos eso para el álgebra y la matemática de alto nivel.

-¿Del mismo modo en que ustedes demostraron que hay un área muy precisa sin la cual no podríamos leer, la matemática está localizada en un área específica del cerebro?

-En 1993, con uno de los primeros experimentos de imágenes cerebrales, descubrimos que todos cuando hacemos cálculos activamos el mismo punto del cerebro. En el caso de la lectura está en el parietal izquierdo, en el de la matemática está también en el lóbulo parietal, pero es bilateral. Y recientemente encontramos otra área que tiene que ver con el reconocimiento de los números arábigos. Es verdaderamente un descubrimiento asombroso. Sabemos que hay un área a la que "le gustan las letras". Ésta última es un área a la que "le gustan" los dígitos. Y ambas áreas están a alrededor de un centímetro una de la otra.

-Así como hay diferentes idiomas en el lenguaje, ¿hay diferentes lenguas en la matemática?

-De hecho, la historia de la matemática puede seguirse a través del desarrollo de notaciones apropiadas para los números. Los romanos no tenían una muy buena notación, como todos sabemos, uno no puede calcular con dígitos romanos. Para calcular, los romanos usaban un ábaco, donde movían objetos físicos. La invención de los dígitos arábigos fue una notable innovación que le permitió a nuestros cerebro hacer cálculos exactos mentalmente sin necesidad de mover ningún objeto físico, simplemente pensando sobre los símbolos correspondientes.

-En su libro usted discute posibles diferencias entre el cerebro femenino y masculino en relación con la matemática, un tema particularmente irritativo que últimamente dio lugar a grandes peleas en el mundo científico. ¿A qué conclusiones llegó?

-No estoy seguro de que haya ninguna diferencia biológica real y, si la hubiera, sería muy, muy pequeña.

Lo que sabemos hoy es que, si hay una diferencia, lo que no está probado, es estadísticamente mucho menor que el efecto de la educación. Si uno va a Asia, donde en promedio los estudiantes obtienen mejores puntajes en las pruebas internacionales de matemática que los del mundo occidental, y toma una mujer promedio, estará por encima del hombre promedio en los Estados Unidos, por ejemplo. Nosotros vemos que el efecto de la educación es mayúsculo comparado con cualquier diferencia biológica.

-¿Por qué para los chicos es notablemente más fácil sumar y restar, que multiplicar y dividir, o hacer otras operaciones?

-Sumar y restar son parte de nuestra herencia. Hay experimentos que muestran que bebés de cinco meses ya pueden realizar sumas. Suena loco, pero si uno tiene una pantalla y esconde detrás objetos, primero dos y después otros dos, y luego deja caer la pantalla, ve la sorpresa en la cara del bebé si el número de objetos que aparece es erróneo; por ejemplo si son nueve. Uno puede medir esa sorpresa, por ejemplo, midiendo el tiempo en que se quedan mirando. Este sentido del número incluye una capacidad para combinar cantidades en operaciones de suma y resta. Sin embargo, no hay sentido de raíz cuadrada, incluso la multiplicación no está clara. Aparentemente, aprendemos a multiplicar por una suerte de memoria verbal, no es intuitivo. De modo que hay límites para el sentido del número y para sobrepasarlos necesitamos educarnos.

-Una de los temas que exploran las neurociencias es cómo una entidad física puede producir ideas abstractas. ¿Hay alguna respuesta en relación con la matemática?

-Realmente, no sabemos. Hicimos un experimento en el que tomamos imágenes cerebrales de matemáticos profesionales y pudimos ver que cuando ellos hacen matemática muy abstracta, por ejemplo, cuando están pensando en espacios de infinitas dimensiones, activan las mismas regiones, lo que ignoramos es cómo están codificadas estas operaciones. Sospechamos que hay redes neuronales con algoritmos de aprendizaje que extraen información, como el programa de inteligencia artificial que acaba de ganarle al campeón mundial de Go. Esas redes tienen codificación implícita de conceptos, como "territorio", "frontera"... Éste es un modelo aproximado de lo que hace el cerebro.

-¿Hay personas que nacen con un talento especial para la matemática? La historia abunda en ejemplos asombrosos, como Gauss, Galois, Ramanuján...

-Hablo sobre Ramanuján en el libro, es un personaje maravillosamente romántico. Pero incluso Ramanuján tenía que esforzarse. Trabajaba muy duro. Y enfrentaba los mismos problemas que enfrentamos todos. Es muy conocida esa leyenda de que, cuando Ramanuján estaba en su lecho de muerte, [el matemático británico] Hardy fue a visitarlo y le dijo "El taxi que me trajo hasta aquí tenía una patente número 1729". Parece una cifra banal, pero Ramanuján enseguida le habría dicho: "Es el número más pequeño que puede ser escrito como la suma de dos cubos de dos maneras diferentes". Entonces uno piensa "¡Qué impresionante!". Pero después se fija un poco más. Alguien como Ramanuján tiene que saberse los cubos. El cubo de 10 es 1000, eso es algo obvio, y el cubo de 9 es 729. De modo que, con un poco de entrenamiento, uno ve inmediatamente que 1729 está hecho de 1000 y de 729. Esa es una solución. Pero ¿cómo sabía que era la suma en dos formas diferentes? Bueno, resulta que Ramanuján se había entrenado en el sistema británico de medición, y había aprendido que hay 12 pulgadas por pie, y que un pie cúbico es 12 al cubo. ¿Y cuánto da 12 al cubo? 1728. Ramanujan sabía eso de memoria... como muchos escolares. Por lo tanto es muy probable que le resultara obvio que 123 +1 es 1729. Con esto no quiero quitarles la magia a los grandes matemáticos, pero ellos luchan, como todos nosotros, tienen que superar obstáculos que también nosotros enfrentamos. Todos los chicos vienen equipados con las mismas capacidades para la matemática, sólo que algunos están más motivados para esforzarse en este campo.

-Se diría que con los grandes matemáticos ocurre lo mismo que con músicos y bailarines: cuando se los ve actuar parece sencillo, pero antes de llegar a eso tuvieron que pasar por un entrenamiento extenuante.

-En cualquier caso, no podemos subestimar los efectos de la educación. Fui extraordinariamente afortunado de colaborar con un lingüista que va todos los años al Amazonas a trabajar con los Mundurukú. Les tomamos pruebas para analizar las diferencias entre los que recibían educación y los que no. Encontramos que incluso las cosas más simples son resultado de la educación. Por ejemplo, usted sabe que existe la misma distancia entre 8 y 9 que entre 1 y 2. Es una distancia de uno, y por eso pensamos en los números como una línea, la recta numérica, donde están equidistantes unos de otros. Los Mundurukú no piensan eso. No pueden contar. Contar es una invención, igual que los números arábigos o la calculadora de bolsillo. Su lenguaje se detiene en 4 o 5 y para ellos 8 está más cerca de 9 de lo que 1 está de 2. Porque la razón entre 8 y 9 es más pequeña que la que existe entre 1 y 2 (2 es el doble de 1). Y, aunque los Mundurukú puedan parecer raros, si uno toma un chico de cinco años recibe la misma respuesta. Se puede hacer un test casero: si dibuja una línea de 1 a 100 y pregunta dónde está el 10, pondrán 10 en el medio. Puede sonar loco, pero uno tiende a pensar en términos de proporción. La intuición sobre números tiene límite. Uno es que es aproximada, pensamos en términos de proporciones. Por eso, en la vida de todos los días, por ejemplo, cuando negociamos el precio de un auto, operamos con porcentajes.

-¿Y por qué piensa usted que para los chicos es más difícil aprender matemática que lectura?

-Depende de lo que usted llame "matemática". Si uno se fija en la historia, lo que ahora les pedimos a nuestros chicos, que resuelvan ecuaciones de segundo grado, en la Edad Media fue un problema que enfrentaron los mejores matemáticos árabes. El que tenía éxito era considerado un genio. La matemática está evolucionando constantemente y le pedimos más y más a nuestro cerebro. No nos damos cuenta de que los chicos de hoy tienen un nivel notable en matemática. Ahora, ¿por qué no les gusta a todos? Creo que tiene que ver más bien con la forma en que introducimos la matemática en la escuela. La usamos como una herramienta de selección. Por definición, es una materia en la que no todos los chicos deben tener éxito. En nuestro sistema queremos favorecer a unos pocos chicos porque son buenos en matemática. Creo que esto es erróneo, y que en principio todos los chicos pueden aprender instrumentos mínimos de matemática sin problemas. De hecho, es muy placentero desafiar al cerebro a resolver problemas. Es una lástima que en nuestra sociedad consideramos que "cultura" es literatura, no nos damos cuenta de los beneficios extraordinarios que la matemática le dio a la humanidad. Es parte de nuestra cultura, pero no la estamos cultivando.

-¿Qué les puede enseñar la neurociencia a los maestros y profesores de matemática?

-Lo primero es que los chicos son mucho más competentes de lo que piensan. Aquí deberíamos hablar de Piaget, que tuvo una enorme influencia en la educación y fue un genio, pero en este caso se equivocó: no es correcto pensar que los chicos avanzan lentamente, y que empiezan con un conocimiento muy pequeño de lógica y matemática. Lo que estamos viendo es que los chicos son extraordinariamente capaces de entender lo que es una suma o una resta. También conceptos de lógica y probabilidad. Los bebés de menos de un año pueden estimar cuál es la probabilidad de que un objeto salga de un cofre, por ejemplo. Los conceptos de probabilidad, número, espacio, tiempo están todos presentes en cualquier humano desde muy temprano. Mi mensaje a los maestros es "Capitalicen esa intuición", "No introduzcan la matemática como una disciplina abstracta". Eso vendrá después, pero primero adjunten los símbolos a la intuición correspondiente. Si uno mira la historia de la matemática, estos símbolos fueron introducidos para resolver problemas específicos. "Geometría" es "medir la Tierra". El Nilo se desborda y hay que encontrar dónde estaban los campos, así que los reconstruyen con la "geometría". Si uno introduce el número y la geometría de este modo, les encanta. Si les pide que armen un cubo con una hoja de papel, tienen que medirlo y se dan cuenta de que si no lo miden bien no les va a salir un lindo cubo. Eso ya es matemática.

Mi colega Elizabeth Spelke, de Harvard, hizo un experimento en el que les pidió a chicos de preescolar que hicieran sumas de dos dígitos. Es loco, porque nunca les presentaron números de dos dígitos. Tom tiene 65 bolitas y le regalan 37, y Peter tiene 25. ¿Quién tiene más? Parece muy complicado, pero cuando vieron los resultados, los preescolares tuvieron mejor rendimiento que los chimpancés. Usaron su sentido de la cantidad. Como las cifras están distantes, no es necesario hacer el cálculo exacto. Los preescolares pueden hacer eso, aunque nunca les hayan enseñado. Y los resultados que obtienen en problemas como éste permiten predecir cómo les va a ir en matemática.

Hay toda una cadena de intuición; cuanto más rápido la desarrollemos, mejor. Maria Montessori ya lo decía a principios del siglo XX y tenía razón.

Cazadores de números

Stanislas Dehaene y su equipo no sólo plantean teorías sobre el funcionamiento de la mente y analizan cómo aplicar sus hallazgos en la educación, también los someten a prueba.

A partir de sus descubrimientos, diseñaron dos jueguitos de computadora para chicos de entre 4 y 10 años. Evaluaciones independientes comprobaron que los que jugaron dos veces por semana durante seis semansa mejoraban en suma, resta y comprensión de la recta numérica. "Estamos empezando a obtener evidencia de que estas ideas realmente funcionan", comenta Dehaene.

Los juegos (The number catcher, http://www.thenumbercatcher.com/nc/home.php, y The number race, http://www.thenumberrace.com/nr/home.php) están disponibles online (en inglés y francés).

Te puede interesar

Enviá tu comentario

Los comentarios publicados son de exclusiva responsabilidad de sus autores y las consecuencias derivadas de ellos pueden ser pasibles de sanciones legales. Aquel usuario que incluya en sus mensajes algún comentario violatorio del reglamento será eliminado e inhabilitado para volver a comentar. Enviar un comentario implica la aceptación del Reglamento.

Las más leídas